INTERNET

August 9th 2011, OSG Site Admin Workshop
Jason Zurawski — Internet2 Research Liaison

Network Performance Hands-On




Agenda

Getting into the Machines

15t Exercise — Exploring Ping for RTT

2"d Exercise — Exploring OWAMP for OWD, Loss, OOD
Comparison of Latency Findings

Musings on Throughput

3"d Exercise — Exploring Throughput

Comparison of Results

4th Demonstration — Using NDT as the “first responder”

Conclusion

IN T Elllln_l_f T
perfS@NAR

powered



Getting into the Machines

Everyone was mailed a username/password. If not, raise your hand
now

SSH
Terminal application for Linux/Mac users
Putty (http://www.chiark.greenend.org.uk/”sgtatham/putty/) for windows people.
How to get in:
ssh user@npw.internet2.edu
Enter password
Navigation:
4 hosts (assume direct connections are all-to-all):
head
red-pcl
blue-pcl
green-pcl
Your SSH key works on all of them

Machines are fully configured, but the network is broken
We will be finding out how and where it is broken

INTERNET

powered



Agenda

Getting into the Machines

15t Exercise — Exploring Ping for RTT

2"d Exercise — Exploring OWAMP for OWD, Loss, OOD
Comparison of Latency Findings

Musings on Throughput

3"d Exercise — Exploring Throughput

Comparison of Results

4th Demonstration — Using NDT as the “first responder”

Conclusion

IN Tﬁ,'lll‘!ﬁ T
perfS@NAR

powered



Exploring Ping for RTT

RTT = Round trip time.

This is the time it takes to send an ICMP packet from the
source, to the destination, and receive a response
ICMP = packet designed for measurement. Note some sites block
this ...
Same sort of data you get from traceroute probes too

What is RTT good for?

“Latency” between hosts. Recall that:
Network Latency = Distance Delay + Serialization Delay + Queue
Delay + Forwarding Delay + Protocol Delay
Rule of thumb:
1ms = ~50 miles
Differences in medium (e.g. copper vs fiber) do not amount to much
— 5 micro-seconds vs 6 micro-seconds
INTERNET
perfS@&NAR '

powered



Eixploring Ping for RTT

* 4 Machines, we want to build a ‘RTT" map of the network.
Consider this template:

(11

i} i
blue-pcl green-pcl INTERNET
perfS@NAR

powered




Exploring Ping for RTT

How do we do this?

perfS@&NAR

powered

Use the ‘ping’ tool

Example use (from head):
ping -c 5 red-

pcl

Example results:
PING red-pcl (192.168

64 bytes from
64 bytes from
64 bytes from
64 bytes from

red-pcl
red-pcl
red-pcl
red-pcl

.0.2)

(192.
(192.
(192.
(192.

56(84) bytes of data.

168.0.2): icmp seqg=2
168.0.2): icmp seqg=3
168.0.2): icmp seqg=4
168.0.2): icmp seqg=5

—-—- red-pcl ping statistics ---

5 packets transmitted,

rtt min/avg/max/mdev

4 received,

ttl=64
ttl=64
ttl=64
ttl=64

time=21.0
time=21.3
time=20.6
time=20.6

20% packet loss, time 4000ms
20.643/20.922/21.341/0.291 ms

ms

ms

ms
ms

INTERNET



Exploring Ping for RTT

What to do:
From each host, ping all of the other hosts.
From head, ping red-pcl, blue-pcl, and green-pcl
From red-pcl, ping blue-pcl, and green-pcl
From blue-pcl, ping green-pcl
Record the ‘average’ RTT. Also note any loss or duplication (if you

see any).
5 —10 pings for the ‘-c’ flag is enough for this exercise. Feel free

to run more if you want.

INTERNET

perfS@&NAR

powered



Exploring Ping for RTT - Answers

.”3\ 20ms RTT L

npw red-pcl

=111

130ms RTT

150ms RTT 40ms RTT

80ms RTT
(11

blue-pcl green-pcl
INTERNET

perfS@&NAR

powered




Agenda

* QGetting into the Machines

* 15t Exercise — Exploring Ping for RTT

« 2nd Exercise — Exploring OWAMP for OWD, Loss, OOD

*  Comparison of Latency Findings

*  Musings on Throughput

 3rd Exercise — Exploring Throughput

*  Comparison of Results

* 4t Demonstration — Using NDT as the “first responder”

*  Conclusion

INTERNET
perfS@NAR }

powered




Exploring OWAMP for OWD/Loss/O0D

We have RTT, why do we care about OWD (one way delay)?

RTT will mask certain network characteristics
Hides the ‘direction’ of a problem
Will not reveal delays from queue depths

RTT uses ICMP packets, which could be treated differently by routing
engines (e.g. ICMP is a lower priority than TCP/UDP, and may be
delayed)

One way delay is not without difficulties:

Need a daemon + special client, not simple like ping

To do it right, need a standard ... and there happens to be one:
http://tools.ietf.org/html/rfc4656

Need some pretty strict time keeping requirements w/ NTP
What do we really care about in terms of metrics:

One Way Delay

Packet Loss

Out of Order Deliver of Packets

Packet Duplication

Packet Jitter (arrival variation)

INTéiNﬁT
perfS@&NAR y

powered



[Exploring Ping for RTT

* 4 Machines, we want to build a ‘OWD/Loss/Dupplication’ map
of the network. Consider this template:

npw red-pcl
=
il

blue-pcl green-hel INTERNET
perfS-Qpél;lvéﬁ




Exploring OWAMP for OWD/Loss/O0D

How do we do this?

perfS@&NAR

powered

Use the ‘owping’ tool
Example use (from head):

owping red-pcl —c 100

Example results:

Approximately 13.2 seconds until results available

—--- owping statistics from [head]:44841 to [red-pcl]:43706 --—-

SID: c0a80002dle551cea2lc68ec8801f7el
first: 2011-08-04T13:13:51.877
last: 2011-08-04T13:14:01.111

100 sent, 11 lost (11.000%), O duplicates

one-way delay min/median/max = 10.1/10.3/11.1 ms, (err=0.0751 ms)
one-way jitter = nan ms (P95-P50)

TTL not reported

no reordering

-—— owping statistics from [red-pcl]:50122 to [head]:58922 --—-

SID: c0a80001dle551cea50b417c8529d244
first: 2011-08-04T13:13:51.844
last: 2011-08-04T13:14:03.359

100 sent, 0 lost (0.000%), O duplicates

one-way delay min/median/max = 10.1/10.4/11.2 ms, (err=0.0751 ms)
one-way Jjitter = 0.7 ms (P95-P50)

TTL not reported

no reordering

INTERNET



Exploring OWAMP for OWD/Loss/O0D

What to do:
From each host, owping all of the other hosts.
From head, owping red-pcl, blue-pcl, and green-pcl
From red-pcl, owping blue-pcl, and green-pcl
From blue-pcl, owping green-pcl
Note — there will be two lines of output, one for each direction.
We want both, clearly label each
Record the ‘median’ OWD. Also note any loss, duplication, re-
ordering (if you see any). Don’t record lJitter.
100 pings for the ‘-c’ flag is enough for this exercise. Feel free to
run more if you want.
10 packets are sent per second, for a total of 10 seconds (e.g. 100)
You may want to run 1000 packets to see events that may be harder
to track (e.g. small amounts of loss)
INTERNET
perfS@&NAR

powered



Exploring OWAMP - Answers

10ms RTT =
10% Corrupt Packets =3
L1 » m
NpW red-pcl
A 10ms RTT A
30ms RTT 65ms R
65ms RTT
30ms RTT
<,
75ms RTT| [75ms RTT _ 20ms RTT
19% Loss 1% Dupplication|
Y < asms RTT A\
= > E
= 35ms RTT =2
i i
blue-pcl green-pcl

perfS@&NAR

powered

20ms RTT

1% Dupplication

[ERNET



Agenda

Getting into the Machines

15t Exercise — Exploring Ping for RTT

2"d Exercise — Exploring OWAMP for OWD, Loss, OOD
Comparison of Latency Findings

Musings on Throughput

3"d Exercise — Exploring Throughput

Comparison of Results

4th Demonstration — Using NDT as the “first responder”

Conclusion

IN T Elllln_l_f T
perfS@NAR

powered



Comparison of Latency Findings

What’s the big difference?
RTT = OWD, + OWD,
But is OWD, = OWD, ?
Sometimes yes, sometimes no. Why?

Asymmetric Routing

Delays (e.g. propagation, queuing, processing, etc.). Queuing is often
an indication of congestion, something that can be an issue in
clusters

Loss (e.g. failing equipment will force loss of retransmissions). Note
that OWAMP can tell us loss numbers though.

What about the other metrics?
Loss?
Out of Order Delivery?
Duplication?
Jitter?
INTERNET
perfS@&NAR -

powered



Comparison of Latency Findings

Loss?
All loss is bad. Some loss is worse than others:
Loss of data packets = retransmission
Loss of ack packets = relying on selective or cumulative acks
Path length matters
Loss on short RTT paths = easy to recover from

Loss on long RTT paths, longer to recover and thus degradation of
throughput

Loss percentage, 1% vs 10%, which is ‘better’?
Think about the path lengths in your answer...
Out of Order Delivery?
Packets are delayed/routed differently
Stalls a TCP flow because it must ‘wait’ for missing packets
May trigger re-transmissions if the wait is too long

Network cards with TCP offload (something designed to help) can
introduce this behavior locally

INT ER NET
perfS@&NAR '

powered



Comparison of Latency Findings

Duplication?

A packet is received on one end, but the ‘ack’ is lost. The other
end re-sends, but this is not needed. Thus we have a duplicate.
A device may route the same data packet onto multiple interfaces
(e.g. ‘punting’), multiple copies arrive.

Jitter?

Variation in the arrival time of packets. E.g. could signify ‘bursty’
behavior

Ideally a packet stream should be well spaced, and the routers
can process the data through queues at a constant rate

The next couple of slides go into some of the nuances of TCP,
these will help us better understand what is happening before
we move on to the concept of ‘throughput’

INTERNET
perfS@&NAR '

powered



TCP — Quick Overview

Data Packet

Contains some header overhead, and the broken up chunk of user
data

ACK Packet

Acknowledge the receipt of a data packet, “cumulative” in nature
SACK Packet

Selective acknowledgement for a specific missing segment

MSS

Maximum segment size (largest size of packets on a given
network segment)

Congestion Control
Process of self regulating flow speed due to loss in the network
(e.g. making it fair)
Slow Start
Avoid sending more data than the network is capable of
consuming. Goal is to reach a loss (establishes window size by
relying on acks) INTERNET
perfS@&NAR ]

powered



TCP — Quick Overview

Congestion Avoidance

Additive-increase/Multiplicative-decrease [AIMD] scheme
to find a fair speed for a TCP flow by adjusting the sending
window. Starts low (2 x MSS) and increase

Fast Retransmit

Retransmit a single segment after receiving duplicate ACKs
for the prior numbered segment

Fast Recovery
Re-send packets in a window after a timeout

Bandwidth Delay Product
The amount of “in flight” data allowed for a TCP connection
BDP = bandwidth * round trip time

Example: 1Gb/s cross country, ~100ms
1,000,000,000 b/s * .1 s = 100,000,000 bits
100,000,000 / 8 = 12,500,000 bytes
12,500,000 bytes / (1024*1024) ~ 12MB

INTERNET

perfS@&NAR

powered



TCP — Quick Overview

Congestion Control Algorithms (selectable in the
Linux Kernel)

RENO (Slow Start, Cong. Avoidance, Fast Retransmit,
Fast Recovery)

Cubic (Optimized for LFN [Long Fat Networks] with
large latency, Cubic growth pattern)
HTCP (still additive-increase/multiplicative-decrease

[AIMD], more agressive as loss decreases on high BDP
paths)

INTERNET
perfS@&NAR '

powered



TCP — Quick Overview

General Operational Pattern

Sender buffers up data to send into segments (respect
the MSS) and numbers each

The ‘window’ is established and packets are sent in
order from the window

The flow of data and ACK packets will dictate the
overall speed of TCP for the length of the transfer

INTERNET
perfS@&NAR V

powered



TCP — Quick Overview (Typical Sawtooth)

0

Flow 1 —
45 F

40 |
35 |

30 r lIl |III JI‘I |IHI |IIlI .IJI
J J i ! |'l

f / f ! !
2| f / / f / ! /

20 B |J

15 F f

10 F r
5F [ /
J u

0
0 20 40 B0 80 100 120 140 7 )
INTERNET

perfS@&NAR

powered



TCP — Quick Overview

General Operational Pattern — cont

TCP starts slow, until it can establish the available
resources on the network.

The idea is to grow the window until a loss is observed

This is the signal to the algorithm that it must limit the
window for the time being, it can slowly build it back
up

INTERNET
perfS@&NAR '

powered



TCP — Quick Overview (Slow Start)

50

Flow 1 —
45 F

40 \
35

3 0 1 III| I'II J||| ll fl '.'ll 'IJ-
.' |' II III

f / f f ! f
28 F | JJ I|lI / j’ ! / J

20 P |J

Al T

10

5

0

0 20 40 B0 80 100 120 140

INTERNET
perfS@NAR k

powered



TCP — Quick Overview

General Operational Pattern — cont
Receiver will acknowledge packets as they arrive
ACK Each (old style)
Cumulative ACK (“l have seen everything up to this segment”

Selective ACK (sent to combat a complete retransmit of the
window)

TCP relies on loss to a certain extent — it will adjust it’s
behavior after each loss

Congestive (e.g. reaching network limitation, or due to traffic)
Non-congestive (due to actual problems in the network)

Congestion avoidance stage follows slow start, window will
remain a certain size and data rates will increase/decrease based
on loss in the network

Congestion Control algorithms modify the behavior over

time
Control how large the window may grow
Control how fast to recover from any loss INTERNET

perfS@&NAR

powered



TCP — Quick Overview (Cong. Avoidance)

45 |

40 F

35 F

30 F

25 F [

20 F

15 f

10 f

5

0

perfS@&NAR

powered

Flow 1 —

0

20

40

B0

80

100

120

140

o
mfwgr



Agenda

Getting into the Machines

15t Exercise — Exploring Ping for RTT

2"d Exercise — Exploring OWAMP for OWD, Loss, OOD
Comparison of Latency Findings

Musings on Throughput

3"d Exercise — Exploring Throughput

Comparison of Results

4th Demonstration — Using NDT as the “first responder”

Conclusion

INTERNET
perfS@NAR

powered



Musings on Throughput

The term “throughput” is vague
Capacity: link speed
Narrow Link: link with the lowest capacity along a path
Capacity of the end-to-end path = capacity of the narrow link
Utilized bandwidth: current traffic load
Available bandwidth: capacity — utilized bandwidth
Tight Link: link with the least available bandwidth in a path
Achievable bandwidth: includes protocol and host issues

O_> 45 Mbps 10 Mbps 100 Mbps 45 Mbps _>O

source / sink
Narrow \
Link Tight Link -
(Shaded portion shows background traffic) IN T””_‘E T
perfS@NAR ' 4

powered



Agenda

Getting into the Machines

15t Exercise — Exploring Ping for RTT

2"d Exercise — Exploring OWAMP for OWD, Loss, OOD
Comparison of Latency Findings

Musings on Throughput

3" Exercise — Exploring Throughput

Comparison of Results

4th Demonstration — Using NDT as the “first responder”

Conclusion

IN Tﬁ,'lll‘!ﬁ T
perfS@NAR

powered



[Exploring Throughput

* 4 Machines, we want to build a ‘Throughput” map of the
network like we did before. Consider this template:

npw red-pcl
=
il

i} fi
blue-pcl green-pcl INTERNET
perfS@NAR

powered




Exploring Throughput

How do we do this?
Use the ‘bwctl’ tool
Example use (from head):

bwctl -f m -t 10 -i 1 —c green-pcl
bwctl -f m -t 10 -i 1 —s green-pcl

Example results:

bwctl: Using tool: iperf
bwctl: 17 seconds until test results available

RECEIVER START
bwctl: exec line: iperf -B 192.168.0.3 -s -f m -m -p 5004 -t 10 -i 1
bwctl: start_tool: 3521471897.344501

Server listening on TCP port 5004
Binding to local address 192.168.0.3
TCP window size: 0.08 MByte (default)

141 local 192.168.0.3 port 5004 connected with 192.168.0.1 port 5004
ID] Interval Transfer Bandwidth

[

[

[ 14] 0.0- 1.0 sec 3.40 MBytes 28.5 Mbits/sec
[ 14] 1.0- 2.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 2.0- 3.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 3.0- 4.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 4.0- 5.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 5.0- 6.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 6.0- 7.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 7.0- 8.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 8.0- 9.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 9.0-10.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 10.0-11.0 sec 11.2 MBytes 94.1 Mbits/sec
[ 14] 11.0-12.0 sec 11.2 MBytes 94.1 Mbits/sec

bwctl: local tool did not complete in allocated time frame and was killed
bwctl: stop exec: 3521471912.558740

RECEIVER END

perfS@&NAR

powered




[Exploring Throughput

* N.B. BWCTL is a “serial” tool, therefore everyone will be queued when
they attempt to test...

* N.B. This is a 100Mb network only — maximum throughput you can
expect to achieve is around ~95Mbps

Why?
*  What to (try to) do:
From each host, perform tests all of the other hosts.
From head, test to red-pcl, blue-pcl, and green-pcl
From red-pcl, test to blue-pcl, and green-pcl
From blue-pcl, test to green-pcl
N.B. Use the ‘-¢’ and ‘-s’ flags in front of the host name, this will alter
the direction of the test
-c Host = Host is ‘catching’ (receiving) the data
-s Host = Host is ‘sending’ the data

Record the overall throughput.

The intervals are useful for determining TCP ramp up/loss
INTERNET

perfS@&NAR

powered




Exploring Throughput

* N.B. We have some regular monitoring in place to get the
answers:

— http://npw.internet2.edu

— Click on ‘“Throughput’ on the left side.

INTERNET

perfS@&NAR

powered




Exploring Throughput - Answers

1 Mbps

perfS@&NAR

powered

[ 50 Mbps > m
NpW red-pcl
A 92 Mbps A
85 Mbps
90 Mbps
P,
77 Mbps 90 Mbps 90 Mbps
Y 90 Mbps Y
< . _
=
Ll 90 Mbps i
blue-pcl
P green-pcl CITERNET



Agenda

Getting into the Machines

15t Exercise — Exploring Ping for RTT

2"d Exercise — Exploring OWAMP for OWD, Loss, OOD
Comparison of Latency Findings

Musings on Throughput

3"d Exercise — Exploring Throughput

Comparison of Results

4th Demonstration — Using NDT as the “first responder”

Conclusion

INTERNET
perfS@NAR

powered



Comparison of Results

Lets focus on certain paths:
head -> red-pcl
10% Loss (one direction only, H -> R)
Short RTT (20ms), with symmetric (10ms) OWDs

Throughput was ~50 and ~90. Why?

50Mbps direction had excessive los, but a short RTT. Can quickly recovery.
But always recovering

See also the graphs from perfSONAR ... erratic behavior
90Mbps direction was not getting ACK packets (getting all data)

head -> blue-pcl
1% Loss (one direction only, H -> B)
Long RTT (150ms), with symmetric (75ms) OWDs
Throughput is ~¥1 and ~77. Why?

1Mbps direction had little loss, but long RTT. Hard to recover (think of the
BDP). Recovery takes a long time, and we cut our throughput in half with
each loss

77Mbps direction was not getting ACK packets (getting all data) which still
resulted in minor slow down. Need to run a test longer than 10s to see full

ramp up (607) INTERNET

perfS@&NAR

powered



Comparison of Results

Lets focus on certain paths:
red-pcl -> green-pcl
1% Duplication, both directions
Medium RTT (40ms), with symmetric (20ms) OWDs

Throughput ~90 in each direction. Why?
Duplication is not as serious as loss. Does not stall a connection as
severely. Will end up being idle waiting for ack/data packets on either

end occasionally.
Small amount is also not noticed on shorter RTT path

blue-pcl -> green-pcl
No Loss, Duplication
Medium RTT (80ms), with asymmetric (45ms/35ms) OWDs

Throughput ~90 in each direction. Why?

In this case the asymmetry is not bad (because we are fabricating it). If
this was the result of a longer route, or queueing, we would expect to

see differences in the numbers.
INTER NE T

perfS@&NAR

powered



Agenda

* QGetting into the Machines

* 15t Exercise — Exploring Ping for RTT

« 2" Exercise — Exploring OWAMP for OWD, Loss, OOD

*  Comparison of Latency Findings

*  Musings on Throughput

 3rd Exercise — Exploring Throughput

*  Comparison of Results

e 4th Demonstration — Using NDT as the “first responder”

*  Conclusion

INTERNET

perfS@&NAR

powered




Using NDT as the “first responder”

NDT is a single shot tool.
Tries to reveal as much about your host and network as it can

Will note things like buffer sizes (something you can easily fix:
http://fasterdata.es.net/fasterdata/host-tuning/)

Will note congestion/bottlenecks between your client and the
server

This is really the first thing you should try when you notice a
problem.

Use the client on your storage node/compute node.

Test against a well known server. Internet2 has 9 of these, pick
your closest:

ndt.(ATLA, CHIC, HOUS, KANS, LOSA, NEWY, SALT, SEAT,
WASH).net.internet2.edu

|Nféiuﬁr
perfS&NAR

powered



Using NDT as the “first responder”

How do we do this?
Use the ‘web100clt’ tool

Example use (from head):
webl00clt -n red-pcl

Example results:

Testing network path for configuration and performance problems -- Using
IPv4 address

Checking for Middleboxes . . . . ¢« ¢« ¢ ¢ ¢« « « ¢« « « « « « o Done
checking for firewalls . . . . . . « « ¢« ¢« « ¢« « « « « « « . Done

running 10s outbound test (client to server) . . . . . 58.35 Mb/s

running 10s inbound test (server to client) . . . . . . 93.27 Mb/s

Server unable to determine bottleneck link type.

Information: Other network traffic is congesting the link
Information [C2S]: Packet queuing detected: 50.18% (local buffers)
Information [S2C]: Packet queuing detected: 14.05% (local buffers)

Server 'red-pcl' is not behind a firewall. [Connection to the ephemeral port
was successful]

Client is not behind a firewall. [Connection to the ephemeral port was
successful]

Packet size is preserved End-to-End
Server IP addresses are preserved End-to-End o
Client IP addresses are preserved End-to-End | N T E'l“ N ET

perfS@&NAR

powered




Using NDT as the “first responder”

What to do:

Test this out between one host and another host, spread out
because NDT will queue tests...

Use the -l’, *-II’, and *-lII" options for more interesting output. One
‘I will tell you things about your connection and host (which is
useful).

INT ER NET
perfS@&NAR '

powered



Agenda

Getting into the Machines

15t Exercise — Exploring Ping for RTT

2"d Exercise — Exploring OWAMP for OWD, Loss, OOD
Comparison of Latency Findings

Musings on Throughput

3"d Exercise — Exploring Throughput

Comparison of Results

4th Demonstration — Using NDT as the “first responder”

Conclusion

INTéiNﬁT
perfS@&NAR y

powered



Conclusion

Thanks for listening to the brief introduction to performance
measurement

Its hard to condense things into an hour.

If you think this sort of thing would be good for your lab/campus,
drop me a line — zurawski@internet2.edu

All of these tools are available in the OSG VDT package, and are
useful when things just don’t seem right with performance

Don’t suffer with poor performance, there are lots of people
available to help fix things

|Nféiuﬁr
perfS&NAR

powered



INTERNET

Network Performance Hands-On

August 9t 2011, OSG Site Admin Workshop
Jason Zurawski — Internet2 Research Liaison

For more information, visit http://www.internet2.edu/workshops/npw

46 —8/4/11, © 2011 Internet2




